metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[trimethyltin(IV)]- μ -2-thiophene-2-acetato- $\kappa^2 O:O'$]

Hongyun Wang, Handong Yin* and Daqi Wang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: handongyin@163.com

Received 3 November 2007; accepted 3 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.014 Å; R factor = 0.037; wR factor = 0.127; data-to-parameter ratio = 18.4.

The title compound, $[Sn(CH_3)_3(C_6H_5O_2S)]_n$, has an infinite chain structure. The SnO_2C_3 centre has a slightly distorted trigonal bipyramidal geometry with the O atoms in the axial positions.

Related literature

For related materials, see Ma et al. (2006).

Experimental

Crystal data [Sn(CH₃)₃(C₆H₅O₂S)] $M_r = 304.95$ Monoclinic, $P2_1/c$ a = 9.5179 (13) Å b = 10.1177 (14) Å c = 13.2038 (18) Å $\beta = 104.039$ (2)°

 $V = 1233.5 (3) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 2.21 \text{ mm}^{-1}$ T = 298 (2) K $0.54 \times 0.39 \times 0.37 \text{ mm}$

Data collection

```
Siemens SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{min} = 0.381, T_{max} = 0.495
(expected range = 0.340–0.441)
```

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.037 & 18 \text{ restraints} \\ wR(F^2) &= 0.127 & H\text{-atom parameters constrained} \\ S &= 1.00 & \Delta\rho_{\text{max}} = 1.10 \text{ e } \text{ Å}^{-3} \\ 2168 \text{ reflections} & \Delta\rho_{\text{min}} = -0.63 \text{ e } \text{ Å}^{-3} \\ 118 \text{ parameters} \end{split}$$

4898 measured reflections

 $R_{\rm int} = 0.032$

2168 independent reflections

1622 reflections with $I > 2\sigma(I)$

Table 1 Selected bond lengths (Å).

Sn1-C8	2.113 (8)	Sn1-O1	2.200 (5)
Sn1-C9	2.120 (7)	Sn1-O2 ⁱ	2.353 (5)
Sn1-C7	2.121 (7)		

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

We acknowledge the financial support of the Shandong Province Science Foundation, and the State Key Laboratory of Crystalline Materials, Shandong University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2631).

References

- Ma, C., Li, J., Zhang, R. & Wang, D. (2006). J. Organomet. Chem. 691, 1713– 1721.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Systems, Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, m2958 [doi:10.1107/S1600536807055651]

catena-Poly[[trimethyltin(IV)]-μ-2-thiophene-2-acetato-κ²O:O']

H. Wang, H. Yin and D. Wang

Comment

The title compound, (I) (Fig. 1), possesses an infinite one-dimensional chain structure arising from Sn—O bridges to the ligand. The Sn—O distances in (I) (Table 1) are similar to those in related organotin carboxylates (Ma *et al.*, 2006). The Sn atom has distorted trigonal-bipyramidal geometry, with the O atoms in axial positions $[O1-Sn1-O2^i = 173.28 (17)^\circ]$ and the C atoms of the three methyl groups in equatorial positions. The sum of the equatorial C—Sn—C angles is 359.4°, indicating near coplanarity for these atoms.

Experimental

The reaction was carried out under a nitrogen atmosphere. 2-Thiopheneacetic acid (1 mmol) and sodium ethoxide (1.2 mmol) were added to 30 ml of benzene in a Schlenk flask and stirred for 0.5 h. Trimethyltin chloride (1 mmol) was then added to the reactor and the reaction mixture was stirred for 12 h at 313 K. The resulting clear solution was evaporated under vacuum. The product was crystallized from a mixture of dichloromethane/methanol (1:1 ν/ν) to yield colourless blocks of (I). Yield 80%; m.p. 452 K. Analysis calculated (%) for C9H₁₄O₂SSn: C 35.44; H 4.63%. found: C 35.37; H 4.71%.

Refinement

The H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. Atom O2A is generated by the symmetry operation (1 - x, 1/2 + y, 3/2 - z).

Fig. 2. Part of the chain structure of (I), H atoms have been omitted for clarity.

catena-Poly[[trimethyltin(IV)]- μ -2-thiophene-2-acetato- $\kappa^2 O:O'$]

Crystal data [Sn(CH₃)₃(C₆H₅O₂S)]

 $F_{000} = 600$

$M_r = 304.95$	$D_{\rm x} = 1.642 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2389 reflections
<i>a</i> = 9.5179 (13) Å	$\theta = 2.6 - 25.8^{\circ}$
<i>b</i> = 10.1177 (14) Å	$\mu = 2.21 \text{ mm}^{-1}$
c = 13.2038 (18) Å	T = 298 (2) K
$\beta = 104.039 \ (2)^{\circ}$	Block, colourless
V = 1233.5 (3) Å ³	$0.54\times0.39\times0.37~mm$
Z = 4	

Data collection

Siemens SMART CCD diffractometer	2168 independent reflections
Radiation source: fine-focus sealed tube	1622 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.032$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.381, T_{\max} = 0.495$	$k = -11 \rightarrow 12$
4898 measured reflections	$l = -15 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.127$	$w = 1/[\sigma^2(F_0^2) + (0.073P)^2 + 1.6901P]$ where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$
2168 reflections	$\Delta \rho_{max} = 1.10 \text{ e } \text{\AA}^{-3}$
118 parameters	$\Delta \rho_{min} = -0.62 \text{ e } \text{\AA}^{-3}$
18 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

	.1
Fractional atomic coordinates and isotropic or equivalent isotropic displ	acement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sn1	0.56253 (5)	1.10603 (4)	0.72279 (3)	0.0566 (2)
01	0.7129 (5)	0.9441 (5)	0.7131 (5)	0.0843 (15)
O2	0.5752 (5)	0.7961 (5)	0.7658 (4)	0.0794 (14)
S1	0.9638 (3)	0.8817 (2)	0.6287 (2)	0.1037 (8)
C1	0.6853 (9)	0.8260 (7)	0.7362 (6)	0.0735 (19)

C2	0.7962 (9)	0.7225 (8)	0.7295 (7)	0.093 (3)
H2A	0.7478	0.6374	0.7194	0.112*
H2B	0.8667	0.7193	0.7962	0.112*
C3	0.8771 (7)	0.7394 (7)	0.6452 (6)	0.0703 (18)
C4	0.8965 (11)	0.6402 (9)	0.5751 (9)	0.103 (3)
H4	0.8577	0.5554	0.5706	0.123*
C5	0.9859 (13)	0.6919 (12)	0.5122 (10)	0.125 (3)
Н5	1.0093	0.6439	0.4585	0.150*
C6	1.0323 (11)	0.8122 (11)	0.5361 (9)	0.115 (3)
H6	1.0972	0.8550	0.5047	0.138*
C7	0.7008 (9)	1.2365 (8)	0.6666 (7)	0.086 (2)
H7A	0.6764	1.2347	0.5917	0.129*
H7B	0.7996	1.2092	0.6925	0.129*
H7C	0.6889	1.3246	0.6901	0.129*
C8	0.5859 (11)	1.0867 (8)	0.8854 (6)	0.090 (3)
H8A	0.6722	1.1315	0.9219	0.136*
H8B	0.5926	0.9947	0.9039	0.136*
H8C	0.5034	1.1250	0.9041	0.136*
C9	0.3859 (8)	1.0250 (9)	0.6101 (6)	0.087 (2)
H9A	0.3962	1.0458	0.5414	0.130*
H9B	0.2970	1.0617	0.6196	0.130*
Н9С	0.3847	0.9308	0.6185	0.130*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0716 (3)	0.0419 (3)	0.0623 (3)	-0.0046 (2)	0.0279 (2)	-0.00282 (19)
01	0.090 (3)	0.044 (3)	0.133 (5)	0.005 (3)	0.055 (3)	0.007 (3)
02	0.090 (4)	0.052 (3)	0.109 (4)	-0.003 (3)	0.049 (3)	0.003 (3)
S1	0.0950 (16)	0.0907 (17)	0.129 (2)	-0.0182 (13)	0.0331 (15)	0.0003 (14)
C1	0.088 (5)	0.045 (4)	0.093 (5)	-0.001 (4)	0.033 (4)	0.004 (4)
C2	0.102 (6)	0.062 (5)	0.127 (7)	0.018 (4)	0.051 (5)	0.011 (5)
C3	0.058 (4)	0.054 (4)	0.100 (5)	0.012 (3)	0.020 (4)	0.006 (4)
C4	0.110 (6)	0.073 (5)	0.140 (6)	0.008 (4)	0.058 (5)	-0.001 (5)
C5	0.140 (6)	0.104 (6)	0.149 (6)	0.034 (6)	0.072 (5)	-0.001 (6)
C6	0.110 (5)	0.105 (6)	0.148 (6)	0.018 (5)	0.067 (5)	0.015 (6)
C7	0.108 (6)	0.050 (4)	0.112 (6)	-0.019 (4)	0.053 (5)	0.012 (4)
C8	0.128 (7)	0.080 (6)	0.064 (4)	0.001 (5)	0.024 (5)	-0.002 (4)
C9	0.096 (5)	0.089 (6)	0.074 (5)	-0.011 (5)	0.019 (4)	-0.018 (4)

Geometric parameters (Å, °)

Sn1—C8	2.113 (8)	C4—C5	1.425 (14)
Sn1—C9	2.120 (7)	C4—H4	0.9300
Sn1—C7	2.121 (7)	C5—C6	1.307 (14)
Sn1—O1	2.200 (5)	С5—Н5	0.9300
Sn1—O2 ⁱ	2.353 (5)	С6—Н6	0.9300
01—C1	1.276 (9)	C7—H7A	0.9600

supplementary materials

O2—C1	1.242 (8)	С7—Н7В	0.9600
O2—Sn1 ⁱⁱ	2.353 (5)	С7—Н7С	0.9600
S1—C6	1.674 (10)	С8—Н8А	0.9600
S1—C3	1.699 (8)	C8—H8B	0.9600
C1—C2	1.505 (10)	C8—H8C	0.9600
C2—C3	1.509 (10)	С9—Н9А	0.9600
C2—H2A	0.9700	С9—Н9В	0.9600
C2—H2B	0.9700	С9—Н9С	0.9600
C3—C4	1.408 (12)		
C8—Sn1—C9	123.2 (4)	C3—C4—H4	125.9
C8—Sn1—C7	119.5 (4)	С5—С4—Н4	125.9
C9—Sn1—C7	116.7 (3)	C6—C5—C4	114.6 (10)
C8—Sn1—O1	94.6 (3)	С6—С5—Н5	122.7
C9—Sn1—O1	95.0 (3)	С4—С5—Н5	122.7
C7—Sn1—O1	88.6 (3)	C5—C6—S1	113.5 (8)
C8—Sn1—O2 ⁱ	86.2 (3)	С5—С6—Н6	123.3
C9—Sn1—O2 ⁱ	90.1 (3)	S1—C6—H6	123.3
C7—Sn1—O2 ⁱ	85.2 (3)	Sn1—C7—H7A	109.5
O1—Sn1—O2 ⁱ	173.28 (17)	Sn1—C7—H7B	109.5
C1—O1—Sn1	120.6 (4)	H7A—C7—H7B	109.5
C1—O2—Sn1 ⁱⁱ	138.2 (5)	Sn1—C7—H7C	109.5
C6—S1—C3	91.4 (5)	Н7А—С7—Н7С	109.5
O2—C1—O1	122.8 (7)	H7B—C7—H7C	109.5
O2—C1—C2	120.4 (7)	Sn1—C8—H8A	109.5
O1—C1—C2	116.8 (7)	Sn1—C8—H8B	109.5
C1—C2—C3	117.0 (7)	H8A—C8—H8B	109.5
C1—C2—H2A	108.0	Sn1—C8—H8C	109.5
C3—C2—H2A	108.0	Н8А—С8—Н8С	109.5
C1—C2—H2B	108.0	H8B—C8—H8C	109.5
C3—C2—H2B	108.0	Sn1—C9—H9A	109.5
H2A—C2—H2B	107.3	Sn1—C9—H9B	109.5
C4—C3—C2	125.1 (7)	Н9А—С9—Н9В	109.5
C4—C3—S1	112.0 (6)	Sn1—C9—H9C	109.5
C2—C3—S1	122.8 (6)	Н9А—С9—Н9С	109.5
C3—C4—C5	108.3 (9)	Н9В—С9—Н9С	109.5

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) -x+1, y-1/2, -z+3/2.

Fig. 2

